Outline: Advanced Activated Sludge Process Control and Optimization Eric J. Wahlberg, P.E., Ph.D.

Day 1–Begin

- I. Introduction
 - A. Opportunity: Environment–Energy–Economics
 - B. WWTP overview
 - 1. Liquid treatment train
 - a. Influent
 - b. Effluent
 - 2. Solids treatment train
 - a. Biosolids
 - b. Recycle flows
 - 3. A manufacturing plant
 - 4. Optimization and mission of WWTP operators: Remove pollutants from the incoming water—while complying with all permits—and convert them to save, disposal biosolids as sustainably and cost effectively as possible.
 - C. Biochemical oxygen demand (BOD)-discussion
 - D. Total suspended solids (TSS)-discussion
 - E. Primary treatment
 - 1. Entering TSS
 - a. Settleable TSS (TSS_{set}) to the primary sludge
 - b. Non-settleable TSS (TSS_{non}) to the primary effluent
 - 2. Entering BOD
 - a. Soluble BOD (sBOD)
 - b. Particulate BOD associated with settleable TSS (pBOD_{set})
 - c. Particulate BOD associated with non-settleable BOD (pBOD_{non})
 - d. Settleable BOD = pBOD_{set}
 - e. Non-settleable BOD = sBOD + pBOD_{non}
 - 3. Organic TSS (i.e., TSS_{org} or VSS) same material as pBOD
 - 4. Non-settleable TSS/BOD test-description
 - 5. Primary removal efficiencies
 - a. $E_{TSS} = (TSS_{PI} TSS_{PE})x100\%/TSS_{PI}$
 - b. $E_{BOD} = (BOD_{PI} BOD_{PE})x100\%/BOD_{PI}$
 - c. $E_{TSSmax} = (TSS_{PI} TSS_{non})x100\%/TSS_{PI}$
 - d. $E_{BODmax} = (BOD_{PI} BOD_{non})x100\%/BOD_{PI}$

- e. Maximum performance defined—maximum performance defined by wastewater characteristics
- 6. BOD a measure of organic carbon
- 7. Introduction of activated sludge—two unit processes with very different process objectives
 - a. Aeration basin
 - d. Secondary clarifier

Day 1—Morning Break

- II. Activated sludge aeration basin
 - A. Fate of organic carbon in an activated sludge system
 - 1. Maintenance energy: energy is attained by the oxidation of organic carbon to carbon dioxide (CO₂—inorganic carbon) and respired
 - 2. Growth: organic carbon is converted from one form (influent BOD) to another (biomass or MLVSS) when used for growth
 - B. Aeration basin process objective: To convert particulate and soluble organics (i.e., BOD) into a biomass (MLVSS) that is easily separated from the treated water
 - 1. Conversion
 - 2. Separability
 - C. Making sure process objective is being met
 - 1. Must be able to measure degree of organic conversion
 - 2. Must be able to measure how easily the biomass separates for the treated water
 - D. Conversion
 - 1. sBOD in mixed liquor exiting the aeration basin is indirect measure of how much conversion has occurred
 - 2. sBOD test described
 - E. Separability
 - 1. Separability defined: A biomass that is easily separated from the treated water must flocculate well, must settle at a reasonable rate, and must compact ("compress") to a sufficient degree
 - 2. Modified settleometer test begins with flocculation step
 - a. SSV_5 = settling parameter
 - b. SSV_{30} = compaction parameter
 - c. TSS_{sup} (i.e., supernatant TSS) = flocculation parameter

Day 1—Lunch

- F. Factors affecting conversion
 - 1. Must have environment conducive to biological growth
 - a. Adequate DO for aerobic growth
 - b. Overabundance of all nutrients
 - c. Absence of toxic substance

- d. Good mixing
- e. Neutral pH
- f. Growth friendly temperature
- g. Adequate detention time
- 2. Conversion happens with little operator input
- 3. Don't conclude from high secondary clarifier effluent BOD concentrations that there is a problem with conversion; more likely have a sludge settleability problem
- G. Factors affecting sludge quality (i.e., ease of separation, how a sludge flocculates, settles, and compacts)
 - 1. Mixed liquor DO concentration (controlled by air flow rate)
 - a. Short- and long-term effects of low-DO
 - b. "Adequate" mixed liquor DO concentration defined in terms of organics loading and specific oxygen uptake rate
 - c. Using field oxygen uptake rate test to determine where treatment is complete
 - 2. MLSS concentration (controlled by WAS flow rate and on-line aeration basin volume)
 - a. MLSS concentration a response variable not a control variable
 - b. Design equation and variable described
 - c. SRT control is paramount-make it work
 - d. Taking aeration basins on and off line
 - 3. Biological growth rate (controlled by WAS flow rate)—SRT controls growth rate, too
 - 4. Filaments (controlled by many things)
- H. Difference between troubleshooting and process control
 - 1. Troubleshooting is getting out of trouble
 - 2. Process control is staying out of trouble

Day 1—Afternoon Break

- III. The other nutrients
 - A. Ammonia removal
 - 1. Ammonia (NH_3) and ammonium (NH_4^+) in chemical equilibrium dependent upon temperature and pH
 - a. Unionized NH3 is very toxic to fish
 - b. Nitrogenous oxygen demand lowers DO in receiving waters
 - 2. Nitrification is the oxidation of NH₃/NH₄+
 - a. Ammonia oxidizing organisms (AOOs, e.g., *Nitrosomonas*) oxidize ammonia/ammonium to nitrite (NO₂-)
 - b. Nitrite oxidizing organisms (NOOs, e.g., *Nitrobacter*) oxidize nitrite to nitrate (NO₃⁻)
 - c. AOOs and NOOs have a slow growth rate so need a long SRT

- d. Nitrification is an all-or-none phenomenon that is temperature dependent
- e. Uses a lot of oxygen: 4.6 lb of O_2 for every pound of $NH_3/NH_4{}^+$ oxidized
- f. DO inhibition of nitrifiers
- B. Nitrogen removal
 - 1. Nitrogen is a nutrient
 - 2. Nitrification then denitrification
 - 3. Denitrification is reduction of nitrate to nitrogen gas and requires the presence of organic carbon (i.e., BOD)
 - 4. Anoxic define: DO is absent, NO_{3} is present
 - 5. Typical N/DN plant layout
 - 6. mg NH₃/L versus mg NH₃-N/L
- C. Phosphorus removal
 - 1. Phosphorus (often measured as phosphate (PO₄)) is a nutrient
 - 2. Phosphorus removal is different than nitrogen removal: "trick" certain bacteria ("phosphorus accumulating organisms" or PAOs) into storing more phosphorus than normal then waste them from the system
 - 3. Role of volatile fatty acids (VFAs)
 - 4. Typical nutrient (N and P) removal plant layout
 - 5. mg P/L versus mg PO₄/L

Day 2–Begin

- IV. Energy, self-sufficiency, and optimization
 - A. Kan, S.J., K.P. Olmstead and T.A. Allbaugh (Dec. 2010), "Four steps to energy self-sufficiency," Water Environment and Technology, 46-49)
 - B. The four steps
 - 1. Commitment
 - 2. Energy generation
 - 3. Process energy conservation
 - 4. Assessment and plan-checking
 - C. Chemically enhanced primary treatment
 - D. Lowest SRT operation
 - E. Turn down air where not needed
 - F. The Goal
 - 1. Maximize throughput by ensuring as much excess plant capacity as possible is available at any given time
 - 2. Minimize inventory by minimizing the mass of solids residing in each and every process unit at all times (except anaerobic digesters)
 - 3. Minimize operating costs by doing the other two
 - 4. Case study

Day 2–Morning Break

- V. Activated sludge secondary clarifier
 - A. Ability to separate biomass after conversion of influent BOD is key to treatment
 - B. Process objective of secondary clarifier: to remove settleable solids
 - C. Process objective of secondary clarifier does NOT include "thickening of the underflow;" trying to thicken RAS in secondary clarifiers is root cause of many problems
 - 1. Operators try to achieve unachievable RAS concentrations
 - 2. Denitrification—an operational problem when it occurs in the secondary clarifier
 - 3. Secondary phosphorus release
 - 4. Deterioration of sludge quality
 - D. Equation describing RAS TSS (TSS_{RAS})concentration developed from solids mass balance around secondary clarifier; TSS_{RAS} a function of
 - 1. RAS flow (Q_{RAS})
 - 2. Influent flow (Q) with constant Q_{RAS}
 - 3. Q_{RAS}/Q with flow-proportional Q_{RAS} control
 - 4. MLSS concentration
 - 5. TSS_{RAS} very predictable; can't thicken biological solids
 - E. TSS_{sup} from modified settleometer test represents the minimum secondary clarifier effluent TSS concentration possible given sludge quality
 - 1. Should be less than 10 mg/L (indicative of "good biology")
 - 2. Secondary clarifier achieving its process objective if secondary effluent TSS (TSS_{EFF}) ~ TSS_{sup}
 - 3. Generally four reasons why TSS_{EFF} > TSS_{sup}
 - a. Denitrification
 - b. Poor flocculation
 - c. Poor secondary clarifier hydraulics
 - d. High sludge blankets

Day 2–Lunch

- F. Six factors define secondary clarifiers performance and capacity
 - 1. Influent flow
 - 2. RAS flow
 - 3. Secondary clarifier surface area
 - 4. MLSS concentration
 - 5. Sludge quality
 - 6. Secondary clarifier hydraulic characteristics
- G. State point analysis
 - 1. Considers the first five factors in list

- 2. Derived and explained
 - a. Graphical
 - b. Axes defined
 - c. Overflow rate operating line—slope equal to surface overflow rate (SOR)
 - d. Underflow rate operating line
 - i. Slope equal to negative of Q_{RAS}/A
 - ii. Solids loading rate
 - iii. TSS_{RAS} concentration
 - iv. Underloaded
 - v. Overloaded
 - vi. Critically loaded
 - e. State point
 - f. Settling flux curve—defined by sludge settling characteristics
 - g. Review and examples

Day 2-Afternoon Break

- 3. MLSS concentration can't be controlled by Q_{RAS} unless a sludge blanket is allowed to form in the secondary clarifier or if a sludge blanket already exists in the secondary clarifier
- 4. System TSS_{RAS} concentration versus 30-minute settled MLSS concentration and how the mixed liquor "compacts"
- 5. Optimum RAS flow is lowest RAS flow possible that does not result in a sludge blanket during highest flow of the day; requires two considerations
 - a. How the sludge settles which determines the location of the settling flux curve
 - b. How the sludge compacts which determines the maximum $\ensuremath{\mathsf{TSS}_{\mathsf{RAS}}}$ concentration possible